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Abstract

A code is described which transfers an arbitrary initial plasma and field configuration
under the constraints of mass and flux conservation into an equilibrium state by mini-
mizing the energy of the system so that, in principle, the equilibrium attained is stable.
Several possible minimizing algorithms are implemented and compared. One of them
introduces an artificial time amd derives additional information on the lowest eigenvalue
of the asymptotic linear problem from time history. Time integration of this method is
explicit with time steps of varying length which admits a mean step two orders of magnitude

larger than the usual stability limit,

The computation grid is Eulerian corresponding to space-fixed cylindrical coordinates
whose boundary is a torus surface with rectangular cross=section. By this choice numerical
flux conservation is not automatically guaranteed but it is possible to handel complicated
field topologies. The code is checked against known analytical results and the dependence
on the mesh size is studied. It is applied to calculate non-axisymmetric, toroidal equilibria
with one or more magnetic axes and to determine the instabilities of helical (= 2and 3

configurations.




1. Introduction

One of the basic problems of plasma physics is the calculation of general 3-dimensional
magnetohydrostatic equilibria and the assessment of their stability. Knowing these is
essential for designing confinement devices without ignorable coordinates such as stella-

rators or tokamaks disturbed by ripple, additional helical windings or instability.

The solution of this problem is approached along two lines, i.e.
a) analytically, by solving the equations for equilibrium directly, using
small parameters /1,2,3/,

b) numerically, by satisfying the equilibrium conditions on a grid iteratively.

It is this latter approach which will be described here. Starting from an arbitrary distribution

of plasma pressure and magnetic field, this distribution is adjusted under magnetic flux, mass

and entropy conservation in such a way that the plasma energy W;fc(})((]éz/g T P/(&~ 4))
is decreased monotonically. A state of minimum energy is thus approached which represents a
MHD equilibrium. To be sure that this equilibrium is a state of minimum energy with respect

to all degrees of freedom, the system is displaced stechastically from this equilibrium. It now

relaxes toward the old or a new equilibrium which is now definitively stable.

Previous numerical work on the minimization problem /4/ uses the set of nested magnetic flux
surfaces as Lagrangian coordinate surfaces. It is thus restricted to the case of only one
magnetic axis. We use a much simpler space-fixed Eulerian coordinate system which

admits more than one magnetic axis to be present at the expense of the magnetic flux not

being automatically attached to mass motion.

A different, but related, method /5/ follows the full plasma dynamics by solving the
complete MHD equations in time in a mixed Eulerian - Lagrangian grid and approaches

equilibrium by inserting a friction term into the equation of motion.

In the next section we describe the properties of the potential energy in the neighbourhood
of an equilibrium. From this knowledge we derive in Sec. 3 different strategies of proceeding
from an arbitrary initial state to the state of minimum energy. Section 4 describes the method

of investigating stability properties of a given equilibrium. In Sec. 5 we give some details




of the numerical procedure. Section 6 shows results of tests on the reliability of the code

and of calculations of different stellarator equilibria and their stability.

2. Properties of the Equilibrium

A MHD equilibrium is characterized as a stationary state of the potential energy W,

W= [die (32 + v/(i-1)) | M

fws= o

4

(2)

in respect of infinitesimal displacements j_(x) which satisfy the constraints of mass and

magnetic flux conservation, i.e.

fs = -v (7§), @
SR~ vx (£xB).

-~

(4)

The initial state is assumed to be isentropic, and therefore one may put
throughout .

The plasma is contained in a straight or toroidal domain of fixed rectangular cross-section.
The plasma extends to the wall without a vacuum region in between. In the limit of very low
densities the field becomes force-free rather than a vacuum field. The boundary condition

at the wall is assumed to be

£=0. (6)

The magnetic field may pass through the wall, i.e. the wall is not a flux surface, but

according to eq. (6)

§B.m =0 )

)

the normal component of the field does not change, i.e. the magnetic flux is frozen in the

infinitely conducting wall.



With the aid of the constraints (3) and (4) the energy variation S\\/ can be rewritten as
” - TR ey
fwe - fd Ff ®

where f represents the local force of the plasma

F= @xB)x B ~vyp. ®)
The Euler equation of the variation (2) is thus the equilibrium condition of magnetohydrostatics

F =0, (10)

If § is a small displacement starting from an equilibrium state, then F s linear and JL\/

is quadratic ini because of eq. (8):

E(f)"cxf N SV RS i& jdsx E(§)§ seariGil

>

In order to illustrate the structure of W near the equilibrium, one may assume _f to be

expanded in terms of discrete eigenfunctions of the linear operator F
4 =
¢ F(E) = -\ & (12)
§- - |

with normalization

50(3>( P};Z = 1,

Foimin 2o Qi
L
Equation (11) may then be rewritten as
- eeling Fomg itk
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L

In the space of eigenfunctions the cut W = const for A;)O is thus an ellipsoid with .
halfaxis proportional to /\:”Z (Fig. 1). Since the eigenvalues which are represented in
the numerical grid differ by many orders of magnitude the ellipsoid contains long and flat
as well as short and steep portions and both have to be resolved on the path of convergence

to the minimum of W.




3. Routes to the Energy Minimum

We start with an arbitrary distribution of density § and magnetic field Bwith ¥. R =0
as initial state. Let us describe a path of displacement to the energy minimum by f (ﬁ)

where t is a time-like parameter. We can then define a "velocity" Vv by

d£=xdt

(15)
and t ransform the constraints (3) and (4) into differential equations in t,
Pp [0t = -V‘(f_‘f), 16)
VB Jot = vx(uxB),
(17)
Equation (8) now becomes
Aw [dt = - [d3% Fov (18)
a) Friction Model (MHF)
A possible way of approaching the minimum potential energy is given by /6, 7/
Vixt)= « F(s%) (19)

where & is a positive number, function or operator (Fig. 1, Curve 1). According to eq. (18)

differential displacements (19) lead to a steady diminuation of W.

The set of equations (9), (16) and (17) together with the assumption (19) is a parabolic

. . " o .21
system. |t describes the motion of a plasma under the action of a friction force « Vv

without inertia. The friction force steadily extracts energy and the plasma creeps into an

equilibrium state.

b) Gradient Method

This method is different from the preceding one in that it proceeds, in principle, indiscrete

steps. At the beginning of step m_at time %h the direction of displacemerif_\_/% is calculated from
equ. (19),




. *

which guarantees decreasing energy at the start. This direction is maintained during the

whole step, i.e. the displacement£ isgiven by

£ =_£”‘-+_\£W [t-{:%), 1)
According to eq. (11) for this displacement and in the neighbourhood of an
equilibrium W decreases quadratically with time towards a minimum. The time when this
m|n|mum is recched tn+], can”be determined by calculcmng the derlvahves

3 .
"j"k E. v att and at a test time t;, W, and W respectively:

o t+aW (ts .t)/[v—h/),a,uz (22)

In practice, it is necessary to stop slightly before the minimum, e.g. ata=0.8 ... 0.9 of

the ideal step time. Otherwise the iteration would fall into cycles of two orthogonal dis-
placements within the same "plane", leading to very poor convergence (Fig. 2). At the end

of the step the new direction Ve is calculated from eq. (20) (which is nearly perpendicular

to the preceding one), and the next step along this new direction is executed (Fig.1, Curve 2).
In the course of iteration there will occur steps where the system by chance moves nearly along
-an eigenmode of «F with eigenvalue \. The time length of such a step is 1/)\ . Thus from

the minimum occuring step length the largest eigenvalue >‘Max and the admissible time step

A t, of eq. (33) can be derived.

c) Conjugate Gradient Method

This method improves the gradient method by determining the minimum of W not only along
a fixed "line" with direction ¥ but within a "plane" built by the direction of displacement

during the preceding step V-1 and the force at the beginning of the new step - F n(Fig.1, Curve 3):

Fo + & <ED /KE2 > Voo, g
Here F -4 15 the force at the beginning of the preceding step and £ >means an average
over the whole volume. By proceeding from time step to time step an increasing number of
dimensions in Hllbert space is thereby included in the minimization procedure so that after a

equal
number of sfeps/f the number of eigenvalues of F the absolute minimum of W would be reached

if numerical errors were absent and if the "nonlinear" effect were negligible. The convergence
rate of this method is very sensitive to the numerical factor @- in eq. (23) which should be

slightly smaller than 1 (i.e. 4 =0.999 ... 0.998) for optimal convergence.

Fig. 2 compares the convergence towards equilibrium for the three methods as given by
the residual force(F’? The friction method is considerably improved by a method of
varying time steps as described in section 5b. ‘It then gives, together with the conjugate

gradient method, the best results.




4. Stability

The state of lowest energy, which is approached by minimizing the potential energy W, is,

in principle, a stable equilibrium. Nevertheless it may be that the final state of an iteration
may not be the state of lowest energy if unstable modes of this final state had not been excited
in the course of iteration. If, for instance, the initial state was axisymmetric it will stay so
during the minimization process and the final state will be axisymmetric, too. This equilibrium

may be unstable in respect of non-axisymmetric modes.

Therefore, in order to be sure that a final state is really a state of lowest energy,one has to
excite all degrees of freedom of the system, i.e. all eigenmodes. This is achieved by dis-

turbing the final state either in an ordered fashion by a Fourier mode or more or less stocha-
stically (Fig.9). If the state was stable, the energy W, after rising with the disturbance, will

return to its previous value; if it was unstable the energy will decrease to a lower level (Fig.3).

Furthermore, using the MHF method one can obtain the lowest eigenvalue of this equilibrium

from the time behaviour of the approximation toward the equilibrium. To show this, we compare
the MHF model with the usual MHD:

MHD MHF
Assume X = (/A— S )§4, P CGU\..Tt‘(24)

The linearized equation of motion

0 QZ_E/%Z = f(f) 8, ‘D)g/?t_-:f‘(f) (25)

can be solved by the separation ansatz

A wt
_f = ffi‘) e (26)

which leads to the eigenvalue equation

A 2 3
E; ‘f(fk>:—/\i(€k ’ /\k real (27)

Thus, the time behaviour of the solution is given by
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(28)

- ¥rw < by
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i.e. while MHD modes are either oscillating or exponentially growing,MHF modes are either
exponentially damped or growing. In the course of time the mode with the lowest eigenvalue
will dominate the MHF spectrum. Thus, from the asymptotic time behaviour. of, for instance,

£ FZ> in the vicinity of the equilibrium, the lowest eigenvalue can be derived. Equations
(28) then give the eigenfrequency of the corresponding lowest MHD eigenmode. For any choice of
n > 0 at least the marginal points of stability are the same for MHF and MHD.

5. Numerical Procedure

a) Spatial Discretization

The process of energy minimization is performed in a space-fixed Eulerian grid. Cylindrical
coordinates around the torus axis are used which may degenerate to Cartesian coordinates

for a straight configuration.

In order to conserve mass and flux over an elementary cell we define different variables on
different points of the cell (Fig. 4), i.e. the mass of the cell M at the centre of the volume,
the magnetic fluxes 1{,( F ’Y’y ; Y;? , and mass fluxes at the midpoints of the corresponding
surfaces and electric field components __E =~!k§ at midpoints of corresponding edges. By
this choice for the location of variables the changes of mass and magnetic fluxes in the cell
and through its walls can easily be calculated by using Gauss *s and Stoke *s theorems
respectively. The total mass of all cells is conserved and the sum of the magnetic fluxes

through all surfaces of a cell stays at zero.

The most important point is the discretization of the force T . Force and velocity are defined
at vertices of the cell. We start from an approximation to the energy of the system,assuming

the magnetic field B to vary linearly between mesh points .




fio
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Deriving W with respect to t and inserting the discretized form of conservation equation (16)

(30)

and (17), we get an expression for W/ which is linear in Vv . Collecting all terms with
\{((:.)): V.J (_:3_) 7 Vz_’ (1) , where ] stands for ( Ly 7/3, J“" 1/2/ ke '1/2,)
we can with eq. (18) identify their coefficients with the force components = Fx (E)
b ) (2 B ey F (3. This choice of T implies satisfaction of eq. (18) in the space-
J 23 - ed

descretized form

b) Discretization in Time

For calculating the change of ¢ and_B in time from eqs. (16) and (17) for fixed V , we use
an explicit second-order integration scheme. While the gradient and conjugate gradient
methods use time steps which are automatically stable, the MHF method has to consider a
maximum admissible time step A'f_o for numerical stability. This time step is determined by
the largest eigenvalue >\1‘1 of the operator Otf:

Qx
Since for the mode with eigenvalue }\

R A VS S S @

the amplification factor V. of ; at subsequent time steps n and n~ 1 . §%: V'ﬁnn,

is given by

~AAt
(as compared with the correct value € for the differential form of eq. (31)) and since
one requires ,VI < for numerical stability, we get the usual condition for A-éo :
1~ Appy 8t =~1 At°:2/)\l4a'x (33)

In order to use eq. (33), one has to estimate the largest eigenvalue of the MHF system on

Max

a grid. For large eigenvalues, i.e. for short wavelengths perpendicular to the field

(as compared with all gradients) the



approximate eigenvalue equation is

«F(§) ~arv Of foxt - - Af o0

where \i is the magnetosonic speed, ¢ VAZxX-F-,.# The eigenvalues A on a grid with mesh

size AX are
>\=o( 9>\m:2d?(VA/Ax)L [4‘&;5 (T’W-A*/L)J (35)

(Fig. 5), where L is the length of the computation interval and

44 m & M= Lifax
The largest eigenvalue in the grid is thus

)‘ch = ‘la(gpatB’.‘),lM /(Ax)z (36)

(An automatic procedure to determine >‘Max and At  is given in Section 3b).
A ‘eo formally depends on the magnitude of X but the relevant quantity A_f = v opt s
- o

= a« F at, does not. For X independent of § A {; depends on ¢

only via p , for &£ §~1it depends on the lower bound of £ as in MHD.

It is possible to go far beyond the admissible time step A+ by using periodic sequences

of time steps with different lengths /8, 9,10/. With N being the number of time steps of the

sequence the amplification factor after the N steps for a mode with eigenvalue )\ is
N
Vo = Tl (1~ )fo\,)‘ (37)
V=1

Again, for numerical stability ‘% |<4is required. One can consider \{V as a

polynomial of order N-in \ with zeros >\v= ’(/A'{;“ and derivative d‘%/‘i’\ = -—&A{V

at A= 0. The polynomial of order N which decreases fastest for x=0 and is bounded between

-land+1 forarguments ©< X £ is the Chebychev polynomial T;/ (k-4) (Fig. 6).

The zeros of the polynomial are given by
Xy = 1 + cos L(.z\,wy) T/(ZA/)] ' V=4 . N (3g)

From X o¢ A and Xho,x =0

it follows that

x = LA\, = Aat,

Aty = 4//\»» = at,/x (39)

and
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Equation (39) was derived on the assumption of linearity and hermiticity of g F. As these

conditions are not strictly fulfilled and due to round-off errors it is advisable to relax VN

to a modified Chebychev polynomic:l?}:j with amplitude smaller than 1 and nodes x, + € ,
€ >0 (Fig. 6). This leads to time steps

At) = 4t /(Xv+é>, (40)

where & and A/ can be decreased and increased respectively in approximating the
equilibrium. For reasons of numerical stability, the A'év should not be used in their natural
monotonjc order,but long time steps should be mixed with short ones. We got good results
by choosing M as a prime number and putting v = ky ,with j=12.-~and k =Ny,
The gain of using time steps from eqs. (39) and (40) as compared with equal time steps
according to eq. (33) is (for lorge N) N

<at>/at, = where (at>= (é« Af")/’v
and § was chosen as £ = O(N ), (Fig. 2). (41)

For large values of A it is necessary to reduce error propagation and round-off errors
by calculating with double precision. Cycles of length # up to 307 have been successfully
applied.

One can use still larger time steps if the spectrum A of eq.. (35) is changed so

m
that the highest eigenvalue A nay is lowered while small (physical) eigenvalues stay
unchanged. This is achieved by, for instance, a smoothing procedure for V  which
replaces V' at a grid point by a weighted mean over its neighbours in the poloidal plane

with relative weights

1 2 1
2 4hEins? (42)
1 2 1

This smoothing results in a dispersion relation

2 (vA /Ax>l {5%2(7%//‘1) +5E-— Cos (rm/Mﬂf/(zm)ms)

(Fig.5), which cuts down /\H to about 1/2 the value of eq. (36) and thus increases
QAx
A t by a factor of 2.
(<]
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The admissible time step A‘to is determined by \zz , i.e. the eigenvalue for a wave
vector perpendicular to the magnetic field. The eigenvalue along the field, on the

: 2
other hand, is by a factor CS /V: o~ FS (where CS

the eigenvalue perpendicular to the field. It is therefore advantageous to use an anisotropic

is the sound velocity) smaller than

friction coefficient with

ooy ~oy
(44)

in order to put both eigenvalues on the same scale and accelerate the parallel motion.

c) Symmetry

Many helical, toroidal, i.e. stellarator,configurations possess a symmetry of double
reflection on the equatorial and a poloidal plane. This symmetry is included in the program

as an option in order to save storage and computing time.

6. Tests
The most important point for testing the code was to check the dependence of the results, i.e.

equilibria and lowest eigenvalues, on the grid size.

To do so, we introduced a known analytic equilibrium, i.e. an axisymmetric toroidal Solovev
equilibriué}c}{on initial condition for the iteration procedure. Owing to the discretization errors
it is not an exact equilibrium on the grid, and so the code displaces the system to some extent.
Fig. 7 shows the analytic equilibrium together with that of the code (for a 10 x 10 point grid)
and the r.m.s. displacement from analytic equilibrium by the code for different mesh sizes

The displacement decreases quadratically with the mesh size.

A similar test was performed for a 3-dimensional force-free field (¥ x B) x B=0/12/.

Again, for this field and p = const as initial conditions the code holds this equilibrium

situation fixed.

Fig. 8 shows the result of a test on flux conservation. A straight helical { = 2 vacuum field

is bent into a torus and filled with plasma. The plasma pressure shifts the magnetic axis

outward towards an equilibrium position. In the initial state the rotational transform & is nearly
constant for all flux surfaces. If the code were ideally flux conserving X should be conserved.

As may be seen, there is an appreciable deviation from flux conservation for rough

grids, becoming small for a 20 x 20 x 20 grid.
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As was pointed out in Section 4 the stability properties of an equilibrium may be tested

by launching a disturbance. The disturbance may be a Fourier mode which is similar to

a suspected lowest eigenvalue mode (i.e. same poloidal and axial periodicity) or it may

be completely stochastic. In any case, after some time the mode with the lowest eigenvalue
should evolve out of the sea of slower growing or faster damping modes. This is shown in

Fig. 9 for a straight £ = 2 stellarator configuration.

Another test studies the unstable eigenvalues of a straight cylinder with constant axial

current density ‘)‘z = const and constant axial magnetic field B, = const,which implies

constant pitch BQ /(:v B_A= const. Growth rates from the code of an m = 1 instability for
different axial wave numbers k are plotted in Fig.10 for different grid sizes together with

the theoretical curve for BG<< BZ /13/.As may be noticed, the mode grows more slowly in the
coarse grid and the maximum growth rate is shifted towards smaller wavelengths. Neverthe-

less, by refining the grid, the true eigenvalue is approximated rather closely.

7. Results

In Fig. 11 we have plotted the flux lines for 3 cuts of a toroidal 0 = 2 stellarator. The flux
lines are found by integrating the magnetic field lines and-marking the intersection points with
the given plane. The figures in the first line give the initial situation,which isa £ = 2 straight
vacuum field bent into a torus. Filling in an axisymmetric plasma with /3 = 2 Picos /B:o
results in a deformation and a shift of the flux lines and a helical distortion of the magnetic
axis until the equilibrium as given in the second line is reached. The shift of the magnetic

axis § (averaged over a helical period) depends on 8, the aspect ratio A and the rotational
transform £ . According to a theoretical calculation By Solovev and Shafranov /14/ this
dependence can be expressed by one parameter 8 / ch, where Bcrif = 2-b2 / A. We have ]
compared in Fig. 12 the shifts of our numerically calculated equilibria for A= 5 and 20, ‘
£ =0.13 ... 0.55 and B up to 0.25 with this theoretical prediction. The calculated points !

lie below the theoretical curve. This may be due to the different boundary conditions.
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As was pointed out the main advantage of a Eulerian grid is the possibility of including
more than one magnetic axis in the calculation area. The equilibrium state of a configuration
with an x-point and two magnetic axes, i.e. the socalled "double star" configuration /15/
shown in Fig. 15 for A= 16 and B = 0.03.This configuration is a superposition of a quadrupole
field on a £ = 3 helical field. In this configuration the toroidal shift is strongly reduced

as compared with Fig. 12.

Finally, we used the code to study the stability of straight and toroidal helical confi-

gurations. Fig. 14 shows the unstable m=1, /&= 0 eigenmode of a straight ¢=2and .Z: 3

equilibrium  respectively. The initial disturbance with azimuthal and axial wave number
m and & becomes modified by the helicity of the equilibrium. The growth rate of this mode I's

turns out to decrease slightly with decreasing mesh size (Table 1).

We also investigated the growth rate & of an unstable m = 2, £ = 2\,/5 flute mode of a
straight helical =2 equilibrium with N = 5 periods, wave number b, a = 0.68 and constant
rotational transform £ per period. §- should be largest if the pitch of the mode and of the
field lines coincide, i.e. & s Jm)= % res’ In Fig. 15 & is varied keeping the wave
number of the mode, & = £./5, fixed. By increasing the number of mesh points the resonance
curve approaches its correct position and the growth rates increase. The extrapolated curve

for AX = 0 was obtained by assuming a (A x)z-dependence of the eigenvalue A)‘-z on grid

size A x forAx = 0.

VAR

(4 x ) f=2 £l =3
0.028 4.8
0.020 4.6
0.016 3.8 4.7
0.010 3.4 4.0

Table 1 Growth rafesX'OF straight helical f=2and 3 configurations with 8 = 0.5

" . 2 2
for different grids (V5" = B,o / f Mox)
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If the £ =2 helix is bent into a torus, keeping the length of the helix and of the
disturbance fixed, the eigenvalues of the new equilibrium are shifted towards stability

as compared with the straight case. In 0202x100 mesh grid the resonant mode appears
stable for aspect ratios A (for pressure 1/e-width) below 30, and the maximum eigenvalue
at A =60 has about half the value of the corresponding straight case (A = 0o ) (Fig. 16).

For smaller grid sizes the aspect ratio for marginal stability may be expected to be smaller.

Conclusion
The 3D Eulerian code described is capable of finding the equilibrium state to a given
initial distribution of field and pressure and to assess its stability. Grids with more

3 ; , 2 Al o
than 14” mesh points are necessary if one wents to achieve quantitatively correct results.
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W=const

1 Friction method
2 Gradient method
3 Conjugate gradient method

Fig. 1 Schematic picture of paths of convergence Wmin using different iteration

methods. For simplicity the system is assumed to have only two eigenstates.
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Fig. 2 Convergence rate for different iteration methods
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Friction method with equal time steps
Friction method with periodic sequence of N unequal time steps

“according to eq. (40)

. Gradient method with different fractions a of the step length to

the minimum (a =1 and 0.8)

. Conjugate gradient method with different weight coefficients b =1 and 0.999.
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Fig. 3 Schematic behaviour of energy W and mean square force < F2> during the

approach to an equilibrium. The intermediate equilibrium is disturbed in order

to check its stability.
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Fig. 4 Elementary cell of calculation grid with location of the variables.
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Fig. 6 Amplification factor VN for a mode with eigenvalue /\
1. after N equal time steps at_ = ‘Z//\rm,)( ) t = A/Af% ,
2. after N unequal optimized and relaxed time steps, * = 2 At g - 18.9 4{0
forN=5and £ =0.02 ==
3. after a time t for the ideal case At - 0.
Modes with small ("physical") eigenvalues are treated correctly, modes

with large ("numerical") eigenvalues are at least damped, IVN] £1.
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Fig. 7 Deviation § of the code from an analytic axisymmetric Solovev

equilibrium for different mesh sizes A x .
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Fig. 8 R.m.s. change of rotational transform t-{o by flux loss during the shift of the

magnetic axis in different grids. The configuration is the same as Fig. 11.
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Fig. 11

Equilibrium of a toroidal ae = 2 stellarator with Np = 5 periods, total rotational
transform £ =0.14, 8=2p /B e 0.002, and aspect ratio of the
max’  zo
computation frame A = 20. The grid size is 20 x 20 x 20 points per period.
The figures show 3 cuts through the flux surfaces over a half period. First

line: initial state; second line: final equilibrium.
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Fig. 12 Shift of the magnetic axis (( of a toroidal €= 2 stellarator equilibrium out of the
geometric center for different values of B, £ and A from the code together

with a theoretical result (full line). ({ and A are related to the half width

of the computation frame.
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| =2 straight, ha=0.675, B =022

Y2 k=h/5
*(h Va 2
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Fig. 15  Growth rates 6* ofanm=2, k = h/5 mode of a straight e =2, ha=0.675

helical equilibrium as a function of rotational transform per period £ as ca-

culated with different grids. The resonance should occur at /Cres =0.1.
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Fig. 16  The same as Fig. 15 for a toroidal £=2 equilibrium with€ = 0.11 per period
and varied plasma aspect ratios A= n/(k a). n is the number of wavelengths

of the disturbance along the torus, Np = 5n.
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